ОЛ Електро
93
63
73
93
+380
57
761-42-15
+380
93
761-42-15
ещё
Мощность электродвигателя. Секреты энергоэкономии.

Мощность электродвигателя. Секреты энергоэкономии.

Мощность электродвигателя. Секреты энергоэкономии.

20.01.17

Мы часто сталкиваемся со спорными точками зрения на достаточно простые вещи, которые касаются физики, поэтому заранее просим прощения у специалистов за простой язык и «разжевывание». В этой статье мы детально разберем понятия мощности электродвигателя, методы нахождения потребляемой мощности из сети, а также попробуем понять как можно сэкономить на электроэнергии. Сразу оговоримся, что разбирать будем асинхронный тип электродвигателя как наиболее часто используемый.

 

Итак, любой электродвигатель имеет базовые характеристики, которые указывает завод-производитель на шильде каждого своего изделия.

 

мощность электродвигателя

 

 

 

Как видим, на шильде указаны:

1)      Тип электродвигателя и заводской номер

2)      Количество фаз 3, частота тока 50 Hz, подключение треугольник/звезда 220/380В, номинальные токи 2,7/1,6А

3)      Номинальная мощность электродвигателя на валу 0,55кВт, номинальная частота вращения вала 1360 об/мин, КПД 75%, косинус фи 0,71

4)      Режим работы S1 (постоянный), класс изоляции обмоток F, ГОСТ

5)      Степень защиты от пыли и влаги IP54, год выпуска

 

Как же определить какова потребляемая мощность электродвигателя от сети? Для начала разберемся в понятиях. Номинальная мощность электродвигателя, которая указывается на шильдике электродвигателя это та мощность, которую электродвигатель выдает в установившемся номинальном режиме работы при условии сбалансированной оптимальной работы всего механизма, который приводят электродвигателем. Каждый механизм имеет свою энергетическую характеристику и оптимальный режим работы с точки зрения энергопотребления. Таким образом, первая задача, которую стоит решить для достижения минимизации потребляемой энергии – это правильный подбор электродвигателя для привода того или иного механизма.

Потребляемая мощность электродвигателя от сети является динамической величиной и зависит от нагрузки на валу электродвигателя и потерь мощности на неполезной работе, такой как трение, нагрев и т.д. Наилучший способ определения потребляемой из сети мощности – это эмпирический, поскольку любые расчетные методики дадут значительную погрешность, а погрешности в вопросах энергоэффективности недопустимы. Таким образом, для максимально точного определения потребляемой мощности электродвигателя от сети рекомендуем «погонять» приводимый механизм в различных стандартных режимах работы, измеряя и фиксируя токи в каждом из режимов при помощи токосъемных инструментов. А еще лучше – воспользоваться цифровым счетчиком электрической энергии.

 

Легко заметить, что в нагруженных режимах работы таких как пуск, работа под нагрузкой, номинальный режим, торможение, токи в обмотках увеличиваются, повышаются ЭДС, крутящий момент на валу и т.д. Отсюда следует вторая задача, которую следует решить для снижения потребляемой мощности электродвигателя – задача снижения линейных токов в режимах высокого потребления электроэнергии.

 

 

Путем регулирования частоты тока
 

Этот метод получил пока наибольшее распространения ни смотря на высокие расходы на внедрение, частотное регулирование производится при помощи специальных частотных преобразователей, стоимость которых часто превышает в несколько раз стоимость самого электропривода. Очень безопасный и эффективный метод снижения мгновенной мощности электродвигателя.

 

 

Регулирование напряжения
 

Экономия электроэнергии путем регулирования  частоты вращения электродвигателя плавным изменением напряжения питания при помощи регулятора напряжения. Этот метод применим в некоторых случаях, однако опасен остановками электродвигателя из-за т.н. опрокидывания, когда момент сопротивления механизма выше, чем мощность электродвигателя на валу вследствие непропорционального снижения питающего напряжения. Также такой метод локально снизить мощность электродвигателя требует дополнительных средств контроля режимов работы электродвигателя, контроля температуры обмоток, контроля частоты вращения, мощности электродвигателя на валу.

 

 

 

Решение вопроса влияния несимметричности напряжения сети на мощность электродвигателя.
 

Качество напряжения сети непосредственно влияет на потребление электроэнергии. На симметричность напряжения влияют сами потребители электроэнергии неравномерной нагрузкой по фазам, используя устройства нелинейной нагрузки. Самые «весомые» создатели нелинейной нагрузки – подстанции электротранспорта. Из-за несимметричности напряжения в асинхронном двигателе создается эллиптическое магнитное поле и несколько крутящих моментов, один из которых тормозит систему и расходует энергию.

 

 

 

Реактивная мощность электродвигателя. Внедрение компенсаторов.
 

Как известно, потребляемая из сети электрооборудованием мощность состоит из ряда составляющий, главными из которых являются активная и реактивная мощность. Последние годы в мире динамично развивается направление по внедрению компенсаторов реактивной мощности, что позволяет экономить электроэнергию промышленным потребителям.

 

 

 

Микроконтроллеры

Также перспективным направлением по экономии электроэнергии при использовании асинхронных двигателей является внедрение микроконтроллеров, которые позволяют в режиме реального времени мониторить момент сопротивления приводимого оборудования и соотносить его с крутящим моментом электродвигателя. При снижении момента сопротивления, микроконтроллер передает команду регулятору напряжения. Такая компенсацию реализуется без изменения частоты вращения, поэтому применима только для оборудования, не требующего регулировки частоты.

 

ОЛ Електро
+380
57
761-42-15
НАСОСНОЕ ОБОРУДОВАНИЕ
+380
93
761-42-15
ЭЛЕКТРОДВИГАТЕЛИ
+380
63
233-97-03
ЭЛЕКТРОТЕХНИЧЕСКАЯ ПРОДУКЦИЯ
+380
73
023-89-42
СКУД SUPREMA
+380
93
761-40-22
АДГЕЗИВЫ И ГЕРМЕТИКИ
61103УкраинаХарьковская областьХарьковпр. Науки, 60А
trade@allelectro.com.ua
Карта